

Abstracts

GaAs Integrated Microwave Circuits

E.W. Mehal and R.W. Wacker. "GaAs Integrated Microwave Circuits." 1968 Transactions on Microwave Theory and Techniques 16.7 (Jul. 1968 [T-MTT] (Special Issue on Microwave Integrated Circuits)): 451-454.

GaAs has many desirable features that make it most useful for microwave and millimeter-wave integrated circuits. The process of selective epitaxial depositions of high purity single-crystal GaAs with various doping concentrations into semi-insulating GaAs substrates has been developed. These high-resistivity substrates ($>10^{16}$ ohm · cm) provide the electrical isolation between devices, eliminating the difficulties and deficiencies normally encountered in trying to obtain isolation with dielectrics, back-etching, p-n junctions, etc. This monolithic approach to integrated circuits thus allows for improved microwave performance from the devices since parasitic are reduced to a minimum. Planar Gunn oscillators and Schottky barrier diodes have been fabricated for use in a completely monolithic integrated millimeter wave (94 GHz) receiving front end. The Gunn oscillators are made in a sandwich-type structure of three selective deposits whose carrier concentrations are approximately 10^{18} - 10^{15} - 10^{18} cm⁻³. The Schottky diodes consist of two deposits with concentrations of 10^{18} and 10^{17} cm⁻³. The Schottky contact is formed by evaporating Mo-Au onto the 10^{17} cm⁻³ deposits; all ohmic contacts are on the surface and are alloyed to the N^{+} regions.

[Return to main document.](#)